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Abstract

This paper deals with the construction of algorithms which preserve the first integrals of a class of forced rigid

motions, which retains a Hamiltonian structure, using Lie group methods such as those due to Lewis and Simo and

Munthe-Kaas. For these mechanical systems, we also study the reconstruction of dynamical processes to describe the

evolution of the orientation of the forced rigid body in space; for this we consider different algorithms to solve the

kinematic equations. A comparison between these algorithms is made. Finally, we illustrate the numerical methods

discussed here, studying the stabilization of the relative equilibrium corresponding to the stationary rotation about the

intermediate axis in the presence of external torques about the minor axis.
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1. Introduction

The problem of the numerical integration of Hamiltonian systems whose configuration spaces are Lie

groups has received a substantial amount of research in the past few years. This research seeks to develop

integration methods that preserve exactly the first integrals of the flow corresponding to Hamiltonian dy-

namical systems with symmetry. In particular, various numerical integration techniques are available for the

free rigid body dynamics. For example, Moser and Veselov [1] study the complete integrability of the cor-

responding discrete dynamical system using Lagrangian and Hamiltonian formalism. Lewis and Simo [2,3]
have constructed an implicit algorithm for the N -dimensional rigid body which preserves the energy-mo-

mentum and the symplectic structure of the problem. MacLachlan and Scovel [4] obtain conserving explicit

algorithms embedding the configuration space in a Euclidean space. More recently, Munthe-Kaas [5] has

developed a geometrical method applicable to differential equations evolving on a homogeneous space.
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From the classical treatments of the dynamics of a triaxial rigid body with a fixed point, it is well known

that the uniform rotation about the intermediate principal axis is an unstable relative equilibrium. The

problem of the stabilization of these relative equilibria has been addressed using different methods (see, e.g.,

[6,7]). In this paper we consider simple mechanical systems with symmetry such that, although subject to a

suitable class of external forces, they still admit a Hamiltonian structure. This Hamiltonian structure may

be viewed, [17], as a deformation—in the sense of Weinstein [9]—of the Hamiltonian structure governing the

unforced system. Different classes of control laws for which a closed loop system retains the Hamiltonian

structure of the unforced system have been identified by Bloch and Marsden [8]. In particular, by applying
the energy-momentum method to the stability analysis of rigid bodies with quadratic feedbacks, Bloch et al.

[10] have shown that the angular momentum equations of the rigid body can be stabilized about the in-

termediate axis of inertia by a single external torque applied about the major or minor axis. For this class of

mechanical systems with more general feedback gain parameters a numerical integration of the equations of

motion may be useful to explore the behavior of the trajectories around equilibria points.

Since the configuration space of the mechanical system is a matrix Lie group, one must solve a differential

equation on a manifold. For long-time numerical integration of the corresponding initial value problem on a

manifold one can apply Lie group methods which give a solution which automatically stays on determined
invariant manifolds corresponding to the first integrals of the mechanical system. The application of Lie

group methods requires that the vector field associated to the motion can be written in the form of the in-

finitesimal generator corresponding to the action of a Lie group on a manifold. Recently, Hairer [13] has

developed a symmetric projection method for which the numerical solution also stays on the invariant

manifold of the dynamical system, and it is applicable although the vector field does not take this special form.

Here we will only consider Lie group integrators to integrate the Hamiltonian system with symmetry

corresponding to the dynamics of the rigid body when an external quadratic torque is added. This leads to

the integration of a differential system on the Lie group of orthogonal transformations with a metric, for
which we adapt the Lewis and Simo and Munthe-Kaas methods to solve the equations of motion for this

problem. Using the trajectory for the momentum on the phase space, we will discuss the evolution of the

orientation of the body in this space applying different methods that will be compared.

An outline of the remainder of this paper is as follows. In Section 2 we review the dynamic and geometric

preliminaries required for the study of the forced rigid body motion. Then, in Section 3, we apply the Lewis

and Simo and Munthe-Kaas methods to construct energy-momentum conserving algorithms on the or-

thogonal group with a metric. In Section 4 a numerical simulation is made to study the efficiency and the

conservative properties of both methods. In Section 5, the orientation evolution of the body in the space
frame is determined using the modified Rodrigues parameter to describe the configuration of the body. In

this section, we also describe how other techniques for the study of attitude can be applied to solve this

problem; we will analyze the methods by Austin et al. [14], Buss [15], and the Hairer method [13] applied to

solve the kinematic equation on the orthogonal Lie group. In Section 6, a numerical experiment is used to

compare these integration techniques. Finally, in Section 7 we use the Lewis and Simo algorithm obtained

to study the stabilization problem of uniform rotation about the intermediate axis of inertia analyzing the

phase flow on a level surface of the momentum-like first integral of the considered dynamical system.
2. The rigid body under external forces

2.1. Kinematics and dynamics of the forced rigid body

Consider a rigid body B turning about a fixed point O. The inertial properties are described by a

symmetric inertia matrix I ; we assume that the bodyB is asymmetrical, so that the three eigenvalues I1; I2; I3
of I satisfy I1 > I2 > I3 and Ii þ Ij P Ik, for permutations ði; j; kÞ of ð1; 2; 3Þ. The body frame is defined as the
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principal orthonormal basis fEig fixed to the body. In addition, to specify the geometry of B in R3, a time-

invariant orthonormal reference frame fO; eig of R3 is introduced. Every configuration of B is represented

by a function KðtÞ 2 SOð3Þ whose values are elements of the orthogonal group SOð3Þ.
Let XðtÞ 2 R3 be the angular velocity expressed in the body frame and X̂XðtÞ 2 soð3Þ the skew-symmetric

matrix given by the isomorphism^: R3 ! soð3Þ defined as X̂Xij ¼ eijkXk, where eijk is the permutation symbol.

The evolution of the configuration is given by the linear differential equation

_KK ¼ KX: ð1Þ
On the other hand, to determine the dynamics of the mechanical system, let P be the angular momentum

relative to the fixed point O expressed in the body frame as P ¼ IX. Euler�s equations of motion for the

forced rigid body with a fixed point may be written as

_PPi ¼ aiPjPk þ Ni ð2Þ
being ði; j; kÞ a cyclic permutation of ð1; 2; 3Þ, and a1; a2; a3 constants expressed in terms of the moments of
inertia in the form

a1 :¼ I�1
3 � I�1

2 ; a2 :¼ I�1
1 � I�1

3 ; a3 :¼ I�1
2 � I�1

1 : ð3Þ
Eqs. (1) and (2) describe the control of the attitude of a rigid body where the external torque N is generated

by three gas jets actuators on each principal axis. In this work we consider a class of external torques given

by quadratic feedbacks that in the body frame take the form

N ¼ ð�e1a1P2P3;�e2a2P1P3;�e3a3P1P2Þ; ð4Þ
where ei (i ¼ 1; 2; 3) are the gain parameters. In particular, if e1 ¼ e2 ¼ 1 one obtains the class of torques

considered by Bloch and co-workers [8,10,11] in the study of the stabilization of the uniform rotation about

the intermediate axis of inertia by external torques. Quadratic controls have also been considered by Zhao

and Posbergh [11] to study the robust stabilizing feedback control of uniform rotation, and by Puta and

L�aazureanu [12] to analyze the problem of the integrability of the rigid body equations for some classes of

quadratic control by means of Jacobi functions.

A feedback control of type (4) modifies the dynamical systems varying the moments of inertia about the
principal axes. As the gain parameters change, the modification of the phase portrait of the rigid body can

be accurately described using geometrical integrators. From a numerical point of view the choice of external

torques of class (4) is interesting because the vector field appearing in the differential equation of motion

takes a form which allows us to apply Lie group methods to integrate Eqs. (1) and (2). This type of nu-

merical integrators leads to an accurate description of the motion in long time intervals; in addition, taking

into account the conservative properties of these methods, one may discuss the behavior of the orbits of the

forced rigid body near the curve separatrix of orbits corresponding to different initial conditions on a sphere

kPk ¼ constant. Descriptions of this type might be useful to design a control maneuver of rigid bodies
choosing suitable feedback gains.

For torques of the form (4) the equations of motion (2) can be viewed as the differential equation for P

_PP ¼ P� ðI�1PÞ; ð5Þ
where I is a tensor that in the body frame is given by

I ¼ diagðI1�1; I1�1; I2�3Þ; ð6Þ

where �i :¼ 1� ei (i ¼ 1; 2; 3). As it occurs in the dynamics of a free rigid body, the equations of motion (5)

have two quadratic first integrals

KðPÞ :¼ 1

2
�2�3P

2
1

�
þ �1�3P

2
2 þ �1�2P

2
3

�
; ð7Þ
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and

HðPÞ :¼ 1

2

P2
1

I1�1

�
þ P2

2

I2�2
þ P2

3

I3�3

�
: ð8Þ

Therefore the angular momentum lies in the intersection of two quadrics (ellipsoids, cones or hyperboloids

of one or two sheets, depending on the signs of the parameters �i).

2.2. Description of the motion on the Lie group SOK (3)

Let us consider the Lie group of the linear maps leaving the quadratic form K defined in (7) invariant:

SOKð3Þ ¼ fA 2 GLð3Þ jATKA ¼ Kg; ð9Þ
and let us take this group as the configuration space of a forced rigid body denoted by soKð3Þ� the dual

space of the Lie algebra of SOKð3Þ,

soKð3Þ ¼ fX 2 GLð3Þ jX TK ¼ �KXg ð10Þ

with the pairing determined by the Killing metric on soKð3Þ (see [16, Section 4]) defined as

gðX ; Y Þ :¼ �1
2
TrðadXsadY Þ, where adXZ :¼ XZ � ZX 2 soKð3Þ.

The motion of the forced rigid body on the manifold M :¼ SOKð3Þ � soKð3Þ� is described by the integral

curves of the Hamiltonian vector field XH associated to the function

H : M ! R; ðA; PÞ7! 1

2
gðP \;m�1ðPÞÞ; ð11Þ

where \ denotes the inverse of the isomorphism [ðX Þ :¼ gðX ; �Þ 2 soKð3Þ�, for all X 2 soKð3Þ, and

mðX Þ 2 soKð3Þ� is the Legendre transformation whose coordinate expression with respect to the bases

fEig3i¼1 :¼ fêeiKg3i¼1 (being âa the skew-symmetric matrix associated to a vector a) and its dual fE�
i g

3

i¼1 co-

incides with matrix (6). For the considered mechanical system, the Euler–Arnold equations are:

_AA ¼ ArPH; _PP ¼ ad�
rPH

P ; ð12Þ

where, in coordinates associated to the basis fE[
ig

3
i¼1 of soKð3Þ, one obtains

ðad�
XP Þ

a ¼ Ca
ijXiPj; ð13Þ

where the Ca
ij�s are the structure constants for the Lie algebra soKð3Þ, with nonzero components are

C3
12 ¼ �C3

21 ¼ �1�2; C2
13 ¼ �C2

31 ¼ ��1�3; C1
23 ¼ �C1

32 ¼ �2�3: ð14Þ

The Hamiltonian system ðM;HÞ is invariant under left translations of SOKð3Þ on M, therefore the mo-

mentum in the spatial frame is a constant of motion of the flow associated to the vector field XH.

Let h : soKð3Þ� ! R be the restriction of H to the space soKð3Þ�. Applying the reduction theorem (see [17,

p. 399]) one obtains that the Hamiltonian system (12) induces a Lie–Poisson system on soKð3Þ� (for further
details, see [8–10])

_PP ¼ ad�
rP h

P : ð15Þ

With regard to the basis fEag of soKð3Þ, we find that

rPh ¼ gabI
�1
bc PaEc: ð16Þ

Then, for an initial value P ð0Þ ¼ P0, the trajectory of the vector field Xh stays on the coadjoint orbit through P0
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OP0 :¼ fAd�
A�1ðP0Þ jA 2 SOKð3Þg; ð17Þ

where Ad�
A�1 ¼ APA�1 is the dual of the adjoint action of the Lie group on its Lie algebra. Note that the

vector field on the right-hand side of Eq. (15) coincides with the infinitesimal generator of the coadjoint

action of the Lie group SOKð3Þ on the orbit OP0 .
For a study of the motion in physical variables carried out in a subsequent section, we need to derive the

relationship between the description of motion in variables of R3 and soKð3Þ�. In order to obtain this re-

lationship, we use the isometry iðxÞ :¼ x̂xK between the Lie algebras R3
K :¼ ðR3;�KÞ (where

x�K y :¼ Kðx� yÞ) and ðsoKð3Þ; gÞ, with the inner products defined by the Killing metrics. Then one can

build an isomorphism j between R3
K and soKð3Þ� using the commutative diagram

ð18Þ

where [0ðxÞ :¼ g0ðx; �Þ. Therefore, the variables P 2 R3�

K and P 2 soKð3Þ� are related through P ¼ jðPÞ, or in
local coordinates relative to the basis E[ of soKð3Þ�

Pa ¼ g�1
ab Pb: ð19Þ

Here we have used the equality of the matrices corresponding to the metrics g and g0 in the bases feg and

fEg, respectively.
3. Numerical integrators on SOK(3)

In this section we apply two Lie group methods to obtain a second order accurate numerical solution of

the equation of motion (15) evolving on the Lie group SOKð3Þ. Both methods go from an initial value P0 to
a value P1 ¼ P ðt0 þ DtÞ as

P1 ¼ Ad�
expð�nÞP0; ð20Þ

where exp : soKð3Þ ! SOKð3Þ is the exponential map. Since the Lie group SOKð3Þ is quadratic, one can

replace the exponential map with the Cayley transform:

cay : soKð3Þ ! SOKð3Þ; X 7! 1

�
þ 1

2
X
�

1

�
� 1

2
X
��1

ð21Þ

defined for every matrix X 2 soKð3Þ for which detð1� 1
2
X Þ 6¼ 0 (exceptional matrices in the terminology of

Weyl [18, p. 65]), where 1 denotes the unit matrix. Once the parameter n has been calculated, the config-

uration update is given by

A1 ¼ cayð�nÞA0: ð22Þ

This class of algorithms preserves the momentum in spatial representation.

3.1. The Lewis and Simo method

By applying the Lewis and Simo method [3] to construct integration algorithms preserving in each it-

eration the first integrals of the Hamiltonian system, it is possible to obtain a numerical description of (15)
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due to the Hamiltonian character of the dynamical system. The conservation condition of the spatial

momentum can be expressed in the body representation as

Ad�
cayð�DtnnÞPnþ1 ¼ Pn ð23Þ

for some nn 2 soKð3Þ. From (23) together with the value P
nþ1

2

:¼ 1
2
ðPn þ Pnþ1Þ, one might express Pn and Pnþ1

as

Pn ¼ 2Ad�
cayð�DtnnÞð1þAd�

cayð�DtnnÞÞ
�1Pnþ1

2
ð24Þ

and

Pnþ1 ¼ 2ð1þAd�
cayð�DtnnÞÞ

�1Pnþ1
2
: ð25Þ

Using Eqs. (24) and (25), and taking into account the Legendre transformation

DtPnþ1
2
¼ mðDtnnÞ; ð26Þ

it is found that the parameter nn must satisfy the equation

1

2
DtðPn þAd�

cayð�DtnnÞPnÞ � mðDtnnÞ ¼ 0: ð27Þ

Note that in case K ¼ 1, the vector Dtnn coincides with the ordinary rotation parameter.

For the forced rigid body discussed in this paper, the Lewis and Simo method preserves exactly the

Hamiltonian HðP Þ :¼ 1
2
gðP \;m�1ðP ÞÞ (see (8) and (19)), then

1

2
g P \

nþ1;m
�1ðPnþ1Þ

� �
¼ 1

2
g P \

n ;m
�1ðPnÞ

� �
: ð28Þ

The proof of this result follows taking into account, first, that from (24) and (25) one obtains that ex-

pression (28) is equivalent to

g P \

nþ1
2

; ð2ð1
�

þAdcayð�nnÞÞ
�1 � 1Þm�1ðPnþ1

2
Þ
�
¼ 0; ð29Þ

and, second, that this expression is satisfied because the parameter nn given in (26) is a fixed point of Adcaynn

Adcayð�nnÞnn ¼ nn ðfor all nn 2 soKð3ÞÞ: ð30Þ

To complete the construction of the algorithm it is also necessary to find an equation from which the value

of the parameter Xn :¼ Dtnn can be obtained in each iteration. Such an equation may be derived from (27).
Then, one concludes that the parameter Xn must satisfy the equation

1

2
Dtð1þAd�

cayð�XnÞÞPn ¼ mðXnÞ; ð31Þ

or, in terms of the coordinates associated to the g—dual basis of fEkg:X3
i;j;k¼1

1

2
DtPig�1

ij ðdjk
�

þ BjkÞ � XiIi�ig�1
ij djk

�
E[

k ¼ 0; ð32Þ

where dij is the Kr€oonecker delta and the matrix Bjk is obtained from the expression of cayð�X ÞEjcayðX Þ on
the basis fEkg as

cayð�X ÞEjcayðX Þ ¼:
X3
k¼1

BkjEk: ð33Þ
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Each iteration of the algorithm requires the solution of the system of nonlinear equations (32) to obtain X
in terms of initial values ðA0; P0Þ given on T �SOKð3Þ. To get the solution of (32) one can use a Newton solver

starting with the initial estimate X0 of X obtained from (32) with Bij ¼ 0. Therefore, using the Lewis and

Simo method, an implicit conservative algorithm for solving the forced rigid body problem with an external

torque of the type (4), takes the form

Algorithm 1.

input: A0; P0;
for i ¼ 1; . . . ; n do:

use the Newton method to compute Xi from (32);

Ai ¼ Ai�1cayðXiÞ;
Pi ¼ Ad�

cayð�XiÞPi�1;
output: An; Pn;

Using the approximation cayðhnÞ ¼ expðhnÞ þOðh3Þ and the classical relationship Ad�
exp v ¼ expðad�

vÞ, one
can express a second order of approximation for the map Ad�

cay as

Ad�
cayð�DtnnÞPn ¼ cayð�ad�

Dtnn
ÞPn; ð34Þ

where cayðad�
vÞ :¼ ð1þ 1

2
ad�

vÞð1� 1
2
ad�

vÞ
�1
. Expression (34) allows to simplify the computation in the update

of Pi�1 in Algorithm 1.

Finally, as in the free rigid body case (see [3]), Algorithm 1 gives a second order algorithm. Actually, to

third order in Dt the configuration A 2 SOKð3Þ can be approximated by

Anþ1 ¼ An 1

�
þ Dtnnþ1

2
þ 1

2
Dt2ðnnþ1

2
Þ2 þOðDt3Þ

�
: ð35Þ

Furthermore, using the discretization of the second equation in (12):

Pnþ1 � Pn ¼ Dt½Pnþ1
2
; nnþ1

2
� þOðDt2Þ; ð36Þ

we see that (35) is equivalent to

Anþ1 ¼ An 1

�
þ Dtnn þ

1

2
Dt2ðnn þ _nnnÞ þOðDt3Þ

�
: ð37Þ

This result coincides with that obtained by the Taylor expansion of AðtÞ to third order in Dt.

3.2. The Munthe-Kaas method

Following the Munthe-Kaas method [5], we transform the differential equation (15) on the homogeneous

manifold OP0 into another equation locally equivalent on the linear space soKð3ÞÞ, using for this the map

U : r 2 soKð3Þ7!Ad�
expr 2 OP0 : ð38Þ

The flow Ad�
exp tr on OP0 is related to the flow BexpðtrP hÞ :¼ exp�1

sLexp trP hs exp on soKð3Þ, through the
equivariance condition

UsBexpðtrP hÞ ¼ Ad�
exp r

sU: ð39Þ

On the other hand, the infinitesimal generator for BexpðtrP hÞ, is given by the inverse of the map

dexp : soKð3Þ ! soKð3Þ, defined by (see [19, Section 2.14])
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d

dt
expðrðtÞÞ ¼ dexprðr0ðtÞÞ expðrðtÞÞ; ð40Þ

where the expression of dexp�1 on an open neighborhood of 0 in soKð3Þ on which dexp is invertible may be

written in terms of Bernoulli numbers and the iterated commutators adk
rðV Þ :¼ ½r; adk�1

r ðV Þ� (see details in
[5]). The infinitesimal generator dexp�1 is related to that appearing in Eq. (15) as

TU dexp�1
r ðrPhÞ

� �
¼ ad�

rP h
ðP Þ; ð41Þ

where TU represents the differential of U. Therefore, once the problem

_rr ¼ dexp�1
r rPh; rð0Þ ¼ 0; ð42Þ

has been solved on the linear manifold soKð3Þ, one can obtain the solution of (15) as

P ðtÞ ¼ Ad�
exp rðtÞP0: ð43Þ

Eq. (42) on the linear space soKð3Þ can be solved using classical integrators and the solution so obtained is

pulled back to OP0 by means of the exponential map. Note that to construct second order algorithms, Eq.

(42) can be replaced by

_rr ¼ rPh: ð44Þ

The Munthe-Kaas integrator preserves the coadjoint orbits, however it does not necessarily preserve the

first integral H. Gonz�aalez [21] and MacLachlan et al. [22] have applied the notion of discrete gradient �rrP h,
for which the relationship:

�rrPh � ðP1 � P0Þ ¼ hðP1Þ � hðP0Þ ð45Þ

is satisfied, to obtain geometrical integrators preserving approximately the energy. In particular, by ap-

plying this technique to the classical rigid body problem, Engø and Faltinsen [20] have built a second order

algorithm preserving both the coadjoint orbit and the energy.

The solution of Eq. (44) gives a second order approximation to the solution of problem (15). Now re-

writing Eq. (44) in terms of the discrete gradient one obtains a difference equation of the form

r1 � r0 ¼ Dt �rrPhðP0; P1Þ ðr0 ¼ 0Þ: ð46Þ

Then, for the forced rigid motion described by the differential Eq. (15), the preservation of h under the

approximating discrete map r0 ! r1 defined by (46) follows seeing that the difference

hðP1Þ � hðP0Þ ¼ �rrPhðP0; P1ÞJðP0; r1Þ�rrPhðP0; P1Þ ð47Þ

is zero as a consequence of the antisymmetry of the matrix ½JðP0; r1Þ�ij :¼ Ck
ij½P0�k.

To obtain r1 from (46) we need to choose a discrete gradient. Here we take the mean value discrete

gradient of Harten et al. (see [22])

�rrhðP0; P1Þ :¼
Z 1

0

rP hðð1� sÞP1 þ sP0Þds ðP1 6¼ P0Þ: ð48Þ

Now, since the discrete gradient �rrP is linear in P for the forced rigid body, we have

�rrhðP0; P1Þ ¼
1

2
ðrPhðP1Þ þ rPhðP0ÞÞ: ð49Þ

Therefore, (46) is equivalent to the following implicit equation for r1:
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F ðr1Þ :¼ r1 �
1

2
Dt rPhððP1ðr1ÞÞð þ rP hðP0ÞÞ ¼ 0 ðr0 ¼ 0Þ: ð50Þ

To solve this equation one may apply the simplified Newton method

DF ð0Þ r½kþ1�
1

�
� r½k�

1

�
¼ F r½k�

1

� �
; ð51Þ

where the Jacobian matrix of (50) is

DF ð0Þ ¼ 1� 1

2
DtD2hðP0ÞJðP0Þ: ð52Þ

Then, from the value r1 2 soKð3Þ derived from (51), and taking the Cayley transform as the algorithmic

exponential, the update of P is given by (22) and (34) with Dt ¼ r1.

We conclude that by using the trapezoidal rule to determine an approximate solution of (44), the

Munthe-Kaas method preserves both the coadjoint orbit and the Hamiltonian of the forced rigid body

modelled by Eq. (15) evolving on SOKð3Þ. The application of this method can be summarized in the fol-

lowing algorithm:

Algorithm 2.

input: P0;
for i ¼ 1; . . . ; n do:

use the Newton method to compute r1 from (50);

Piþ1 ¼ cayðad�
r1
ÞPi;

output: Pn.

Just as in Algorithm 1, here we have used expression (34) to perform the update od Pi in second order of

approximation.
4. Numerical simulation of the motion in soK(3)
*

Wewill now apply Algorithms 1 and 2 to simulate the motion of a rigid body with inertia moments I1 ¼ 1,
I2 ¼ 0:7, and I3 ¼ 0:4. The rigid body is acted upon by an external control of type (4) with gain feedbacks

e1 ¼ e2 ¼ 0 and e3 ¼ 5. For an initial value of the body momentum Pð0Þ ¼ ð0; 2 cosð0:3Þ; 2 sinð0:3ÞÞ, the
integration is carried out over the interval ½0; T � with T ¼ 30, for different step-sizes Dt ¼ 2�3; 2�6; 2�9; 2�12.

In Fig. 1 we plot CPU time (in seconds) measured using the MATLABMATLAB cputime function on a 450MHz-

Pentium processor, as a function of step-size both for Algorithms 1 and 2. Although Algorithm 2 has been

implemented using the simplified Newton method, the run times for this algorithm are larger than those for

the Lewis and Simo algorithm.

To study the efficiency of Algorithms 1 and 2 we choose as a standard solution, PðsÞðtiÞ, the trajectory
obtained using the Lewis and Simo method with step-size Dt ¼ 2�13 and the error is evaluated in the

form

Error :¼ max
i¼1;...;TDt

kPðtiÞ �PðsÞðtiÞk: ð53Þ

Fig. 2 shows the results obtained from the Lewis and Simo and Munthe-Kaas methods for the error as a

function of CPU time. Our results suggest that the Lewis and Simo algorithm is both faster and more

efficient than the Munthe-Kaas algorithm.



Fig. 1. CPU time as a function of the step size for the Lewis and Simo and Munthe-Kaas methods.
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The energy and momentum behavior for the approximate flow obtained through Algorithms 1 and 2, for

a step-size Dt ¼ 2�3, is shown in Figs. 3 and 4. We see that both methods behave very favorably in rendering

the first integrals H and K.
5. Orientation of the forced rigid body

In this section we carry out a study of the orientation evolution of the dynamical model described in the
preceding section in a time interval ½0; T �, applying different methods which will be compared in the next

section.

The orientation evolution of the rigid body in the space frame may be described by a function KðtÞ, with
values in the orthogonal group, which is the solution of the differential equation (1) with initial condition

Kð0Þ ¼ K0. However, the configurations of the forced rigid body stabilized by means of a quadratic

feedback are given by matrices A 2 SOKð3Þ. Since the quadratic form K defined in (7) is indefinite, the

configuration K 2 SOð3Þ of the rigid body is not directly related to A. Here we will use the algorithmic

trajectory ðAðtÞ; PðtÞÞ 2 T �SOKð3Þ given by the Lewis and Simo method to compute the solution PðtÞ of (5)
by means of relation (19). Once Eq. (5) is solved, the discrete update of the configuration K can be obtained

from the kinematic equation (1).

5.1. Method I

For the study of the orientation evolution of the rigid body one may represent the spatial orientation

K 2 SOð3Þ of the rigid body in terms of the modified parameters ðs1; s2; s3Þ 2 R3 defined by Marandi



Fig. 2. Error versus CPU time for the Lewis and Simo and Munthe-Kaas methods.
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and Modi [23]. These parameters are obtained using both the stereographic projection of the three-
sphere

S3 :¼ fq ¼ ðq; q4Þ 2 R4 j kqk2 þ q4 ¼ 1g ð54Þ

onto R3 and the two-fold covering c : S3 ! SOð3Þ (see, e.g., [24]) from the sphere S3 onto the group of

rotations given by

ðq; q4Þ7!
q24 þ q21 � q22 � q23 2ðq1q2 � q3q4Þ 2ðq1q3 þ q4q2Þ
2ðq1q2 þ q3q4Þ q24 � q21 þ q22 � q23 2ðq2q3 � q4q1Þ
2ðq1q3 � q4q2Þ 2ðq2q3 þ q4q1Þ q24 � q21 � q22 þ q23

0
@

1
A; ð55Þ

where q1; q2; q3; q4 denote the components of a unit quaternion ðq; q4Þ. In terms of ðq; q4Þ the modified

Rodrigues parameters are defined as

si :¼
qi

1� q4
ði ¼ 1; 2; 3Þ: ð56Þ

The parameters si are well defined for every rotation through angle / 2 ½0; 2pÞ, in contrast to the ordinary
Rodrigues parameters which are defined only for rotation through angles / 2 ½0; pÞ.

In terms of the modified Rodrigues parameters the orientation equation (1) may be expressed in terms of

the vector s ¼ ðs1; s2; s3Þ 2 R3 as

_ss ¼ BðsÞX; ð57Þ

where BðsÞ is the matrix given by



Fig. 3. Preservation of the first integrals using the Lewis and Simo method with step size Dt ¼ 1=8.
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BðsÞ ¼ 1

2

1

2
ð1

�
� sTsÞ1� XðsÞ þ ssT

�
; ð58Þ

in which XðsÞ is the skew-symmetric matrix related to the vector XðsÞ, and sT denotes the transpose matrix
associated to s.

In order to obtain the evolution of the orientation of the forced rigid body for stabilized trajectories

around the axis P2 we integrate, first, the differential equation (57) on the Euclidean space R3, so that a

minimal number of variables is used and, furthermore, we avoid the use of trigonometric functions which

occur if one uses the local coordinates given by the Euler angles. From the solution P ðtnÞ, with tn :¼ nDt,
corresponding to the dynamical problem (15), obtained applying Algorithm 1, one may determine the

instantaneous angular velocity using (19) and X ¼ I�1P, and then solve (57) using classical integrators. In

the numerical experiment below we will use a standard second order Runge–Kutta method. The integration
can be carried out directly as long as the coordinate singularity s ¼ 0 is not reached.

The evolution of the orientation given by the function sðtÞ may be represented by a curve on the tridi-

mensional projective space RP3 viewed as the unit sphere S3 with antipodal points identified, so that the



Fig. 4. Preservation of the first integrals using the Munthe-Kaas method with step size Dt ¼ 1=8.
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vectors s and�s=ksk2 represent the same configuration. Each point on a curve sðtÞ determines the axis, defined

by the instantaneous vector sðtÞ, and the angle, / :¼ 4 cot�1 ksk, of the rotation Rðs;/Þwhichmust be applied

to the initial configuration K0 to obtain the instantaneous orientation of the body relative to the space frame.

There are other ways to obtain the attitude representation of the rigid body using second order methods.

In the following section, three of these alternative methods are applied to the attitude problem.

5.2. Method II

From the numerical solution PðtÞ of the forced rigid body problem one may also apply the recon-
struction process to get the evolution of the orientation in the spatial frame by means of a discretization of

the dynamical Eq. (1) as that in Austin et al. [14]:

Knþ1 ¼ Kncay
1

2
DtXnþ1

2

� �
; ð59Þ
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where the Cayley transform is now defined on the ordinary orthogonal group and X
nþ1

2

:¼ 1
2
ðXnþ1 þ XnÞ.

From (59) the orthogonality of the orientation matrix is assured in each update of this matrix.

We will write Eq. (59) in terms of the unit quaternions q and r associated to the orthogonal matrices K
and r ¼ cayð1

2
DtXnþ1

2
Þ, respectively. Since R is a rotation matrix whose rotation vector is

X :¼ DtXnþ1
2
2 R3; ð60Þ

the quaternion r is given by

r4 ¼ cos
1

2
kXk

� �
; r ¼ 1

2

sinð1
2
kXkÞ

1
2
kXk

 !
X : ð61Þ

For values z :¼ kXk � 1 the function ðsin zÞ=z is replaced by the Taylor expansion about z ¼ 0 (cf. [25]).

Thus (59) is equivalent to

qnþ1 ¼ qn � rn;

where � represents the quaternion product defined by

q� r ¼ ðq4r4 � q � r; q4rþ r4qþ q� rÞ: ð62Þ
5.3. Method III

Recently, Buss [15] has introduced several algorithms for the simulation of free rigid body motions in

terms of space variables. These algorithms give the orientation evolution of the rigid body in such a way

that the energy variation is the same as that in the exact theory. In the Buss algorithms the attitude evo-

lution is also represented by a map KðtÞ of an interval in the real line into SOð3Þ. The dynamic variables are
expressed in this case in the space frame. The Buss algorithms can be re-expressed in terms of body

variables using the relationships

I s ¼ KIK�1; x ¼ KX; p ¼ KP; ð63Þ

where I s, x, p are the inertia tensor, the angular velocity and the angular momentum variables relative to

the inertial frame, respectively. The augmented second order Buss algorithms take the form

Algorithm 3 (Augmented second order Buss method).
1. input: K0;P0;

2. for n ¼ 1; . . . ; s do:
3. Xn ¼ I�1Pn;
4. _XXn ¼ I�1IðPn � I�1PnÞ;
5. �XX :¼ DtðXþ 1

2
Dt _XXn þ 1

12
Dt2ð _XX�XnÞ;

6. output:Knþ1 :¼ KnRð�XXÞ.

In line 4 of this algorithm we have used the expression

I�1
s ð _ppn � xn � pnÞ ¼ KnI

�1ðPn � I�1Pn þNnÞ ð64Þ

with the external torque N given in (4).

As in Subsection 5.2 one may express the orientation evolution equation (line 6 in Algorithm 2) in terms

of quaternions, now being r the quaternion associated to the rotation vector
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�XX :¼ Dt X

�
þ 1

2
Dt _XXn þ

1

12
Dt2ð _XX�XnÞ

�
:

5.4. Method IV

Finally, we apply here another method to study the attitude of a forced rigid body. We describe the

parametrization of the Lie group SOð3Þ in terms of unit quaternions q 2 S3 as in (54). Now we consider the

differential Eq. (1) expressed in terms of quaternions (see [26, p. 36]) in the form

_qq ¼ AX; ð65Þ

where

A ¼ 1

2

q4 �q1 �q2 q3
q1 q4 �q3 q2
q2 q3 q4 �q1
q3 �q2 q1 q4

0
BB@

1
CCA; X ¼

0

X1

X2

X3

0
BB@

1
CCA:

Eq. (65) is a differential equation on the manifold S3 given as the zero set of the function

gðqÞ :¼ q20 þ kqk2 � 1: ð66Þ

To solve the initial value problem (54) with qð0Þ ¼ q0 we may apply the symmetric projection method due

to Hairer [13] that can be summarized as

Algorithm 4 (The Hairer method).
1. input: q0;
2. for n ¼ 1; . . . ; s do:
3. ~qqn ¼ qn þ GðqnÞTl;
4. ~qqnþ1 ¼ UDtð~qqnÞ;
5. output: qnþ1 ¼ ~qqnþ1 þ Gðqnþ1ÞTl,

where GðqÞ ¼ g0ðqÞ denotes the Jacobian of (66), l is the vector used to project on S3 and UDt is a symmetric

one-step method applied to (65); here we will use the trapezoidal rule

~qqnþ1 ¼ ~qqn þ
1

2
Dt f ðtn; ~qqnÞ
�

þ f ðtn; ~qqnþ1Þ
�
; ð67Þ

where f ðt; ~qqÞ :¼ Að~qqÞX. The vector l and the numerical approximation qnþ1 can be obtained solving the

nonlinear system (5), (66), with ~qq given by (67), using the modified Newton method with the Jacobian matrix

1 �2GðqnÞT
GðqnÞ 0

� �
; ð68Þ

where GðqÞ ¼ ð2q1; 2q2; 2q3; 2q4Þ.
6. Numerical experiments

In this section we integrate the cinematical Eq. (1) or (65) using the numerical methods described above.
For this numerical simulation we take the same inertia moments and external torque parameter as in



Table 1

CPU time and global error for the integration of the kinematic equation using the algorithms of Subsections 5.2–5.4 with step size

Dt ¼ 2�3; 2�6; 2�9; 2�12

Method Dt ¼ 2�3 Dt ¼ 2�6 Dt ¼ 2�9 Dt ¼ 2�12

CPU time Heun 0.62 20.97 183.07

AKW 0.17 1.47 11.17 83.86

Buss 0.42 2.88 21.21 142.37

Hairer 8.10 31.65 199.56 986.47

Global error Heun 0.0026 4.1345e) 005 7.7044e) 007

AKW 0.0617 9.6541e) 004 4.8801e) 005 8.6025e) 007

Buss 0.1939 0.0242 0.0030 3.7799e) 004

Hairer 0.1198 0.0123 0.0015 1.8883e) 004
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Section 4, and the initial configuration is chosen as qð0Þ ¼ ð0; 0; 0;�1Þ, or in terms of the modified Ro-

drigues parameters: sð0Þ ¼ ð0; 0; 0Þ. For the angular momentum PðtÞ we use the results given by the Lewis

and Simo integrator carried out on the time interval ½0; 30� with step-size Dt ¼ 1=84 and initial momentum

Pð0Þ ¼ ð0; 2 cosð0:3Þ; 2 sinð0:3ÞÞ.
To calculate the error in an attitude quaternion we choose as the standard solution the results given by

the classical fourth order Runge–Kutta applied to the differential equation (57) in R3, with step-size

Dt ¼ 8�4. Using this solution as a standard solution, qðsÞn , we calculate the quaternion error as the average

value

Error ¼ max
i¼1;...; TDt

kqðsÞn � qnk: ð69Þ

In this experiment we report the results of the second order methods that we will label as: Heun, AKW,

Buss and Hairer discussed in Subsections 5.2–5.4, respectively. The results of the simulation are given in

Table 1. This table shows CPU time, measured in seconds, and the quaternionic error for different values of

Dt. In our runs of the Heun method, a time step of over 0.1035 has been used. To examine the efficiency of

the considered methods we show in Fig. 5 a log–log plot of CPU time as a function of global error. The plot

shows the affine approximations of the error/CPU time graphs for these methods. The AKW method is

both faster and more efficient than the other methods analyzed.

Finally, Fig. 6 shows the curve s in the projective space RP3 for the mechanical system chosen in the
Section 4 and initial conditions K0 ¼ 1. This figure shows how much the rigid body has rotated in space

after the time needed for carrying the vector P around a closed curve around the axis OP2. From this

Figure one may directly read the axis and angle of rotation. For instance, point B with coordinates

s ¼ ð0;�0:085;�0:337Þ represents a rotation of 4.944 radians about the axis s.
7. Stabilization of a triaxial rigid body

A well-known result on free triaxial rigid body dynamics states that the flow defined by (2) (with N ¼ 0)

on the 2-sphere of constant angular momentum kPk has two hyperbolic equilibrium points,

M�
2 ¼ ð0;�kPk; 0Þ, associated to rotations about the intermediate principal axis. These points are con-

nected by four heteroclinic orbits parametrized as

Pð11;12ÞðtÞ :¼ kPkð11Asechs; 12 tanh s; 1112BsechsÞ; ð70Þ

where r1; r2 can take the values �1, and



Fig. 5. Quaternion error as a function of CPU time using different methods to integrate the kinematic equation.
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A :¼ ða1=a2Þ1=2; B :¼ ða3=a2Þ1=2; s :¼ tkPkða1a3Þ1=2 ð71Þ

being a1; a2; a3 the constants given by (3). The choice 12 ¼ 1 corresponds to the stable manifold, whereas

12 ¼ �1 corresponds to the unstable manifold associated to the point Mþ
2 . Both manifolds consist of two

branches determined by the values 11 ¼ �1.
Now suppose that at time t0 an external torque N ¼ ð0; 0; e3a3P1P2Þ is applied, so that the subsequent

motion has the first integrals (7) and (8) whose respective values are denoted by c1; c2. In [8] it is shown,

using the energy-Casimir method, that the rigid body motion about the intermediate axis is stabilized by an

external torque (4) applied about the major/minor axis for �1 ¼ �2 ¼ 1 and �3 < �1. Now, we make a

numerical study of this process of stabilization about the equilibrium point Mþ
2 using Algorithm 1. In this

case we are interested in the accurate description of the orbits in the space phase, although the parame-

trization of the actual trajectories might not be exactly determined. In the numerical experiment we use the

same mechanical model as in Section 6 with initial values on the sphere kPk ¼ 2.
Fig. 7 shows the orbits obtained by the integration of Eq. (15) applying the Lewis and Simo method with

a step size Dt ¼ 0:1 and with initial values

Pð0Þ ¼ ð2 sin a cos b; 2 cos a; 2 sin a sin bÞ ð72Þ



Fig. 6. Orientation evolution for the forced rigid body. (a.1–a.2) Projection of the curve sðtÞ ¼ OA
_

þ A0B
_

on the planes P1P2 and

P2P3. Points A;A0 are identified points on the sphere S3.

Fig. 7. Orbits computed applying the Lewis and Simo method for different initial conditions (72) (marked with a bullet) on the sphere

kPk ¼ 2 with a ¼ arcsinð2n=10Þ and (a) b ¼ 0; (b) b ¼ p=20; (c) b ¼ arccosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1=ða1 þ a3Þ

p
Þ; (d) b ¼ p=2; being n ¼ 1 . . . 10. Dotted

lines correspond to the separatrix.
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given on four meridians b ¼ const. In particular Fig. 7(c) corresponds to the meridian equal to the branch

of the unstable manifold given by (70) with 11 ¼ 1, 12 ¼ �1. One obtains two families of closed curves

around the axes OP2 and OP3, delimited by a separatrix curve c joining two points ð�M1; 0; 0Þ. Indeed,
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since the initial value Pðt0Þ is upon the level surfaces E0ðPÞ ¼ k1;K
0ðPÞ ¼ k2 and EðPÞ ¼ c1;KðPÞ ¼ c2

corresponding to the first integrals of the free and the forced motions, respectively, the constants k1; k2; c1; c2
must satisfy the relationship

c2 :¼ k2 � k1

�
� c1

�3

�
1

I3
: ð73Þ

Then in the forced motion, the exact orbits corresponding to different initial values Pðt0Þ lie in the inter-

section of the following family of surfaces (parametrized by c1):

a2P2
1 þ a2P2

2 ¼
k1
I3
� k2; ð74Þ
a3P
2
2 þ

a2
�3
P2

3 ¼
a2c1
�3

þ k1
I3
� k2: ð75Þ
Fig. 8. Behavior of the orbits in a neighborhood of the intersection of separatrices (dotted line). Dotted, solid and dash-dot lines

correspond, respectively, to initial values (72) with b ¼ p=2 and (a) d ¼ 0, (b) d ¼ �10 eps and (c) d ¼ �100 eps.
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The parabolic cylinders (75) with a generator parallel to the axis OP1 degenerate into intersecting planes

along OP1 when the constant c1 takes the value

cð0Þ1 ¼ ðk2I3 � k1ÞI1�
I3 � I1

: ð76Þ

The separatrices are contained in the planes

ðP1;P2;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3�3=a2

p
P2Þ: ð77Þ

To study the behavior of the orbits corresponding to initial values near the separatrix, we will use the same

mechanical system as in Section 4, using now the initial conditions (72) with b ¼ p=2 (see Fig. 7(c) and
a ¼ as þ d, where as is the angle between a plane (77) and the plane P3 ¼ 0:

as ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�I3 þ I1ÞI2

ð�I3I2 þ I1I3Þ�þ ðI2 � I3ÞI1

s
: ð78Þ
Fig. 9. Time evolution of P3ðtÞ and initial values as in Fig. 8.
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We assign to d small values d1 ¼ �10 eps and d2 ¼ �102 eps (eps funtion in MATLABMATLAB). The integration is

carried out on the interval ½0; 103� with step-size Dt ¼ 0:1.
Fig. 8 shows the orbits obtained for d ¼ 0—corresponding to the numerical separatrix—and for the

values d1; d2. We see that for the step-size considered, the numerical trajectory for d ¼ d2 is qualitatively

correct but the qualitative behavior d1 is wrong (see Fig. 9).
8. Concluding remarks

We have examined how to integrate Hamiltonian systems evolving on SOKð3Þ keeping in mind the forced

rigid body by means of gas actuators as a prototype example. We have considered the numerical methods

of Lewis and Simo and Munthe-Kaas to implement second order accurate integration algorithms for the

rotation group with a metric whose definiteness depends on three parameters. The application of Lie group

methods requires that the dynamical system admits a Hamiltonian structure, this limits the class of torques

that might act on the rigid body, however there exist well known examples of torques that satisfy this

condition as those chosen in this paper: quadratic torques. We have also studied the relative efficiency of the
algorithms for the motion on the Lie group considered, having observed that the Lewis and Simo method is

more efficient and faster than the Munthe-Kaas method in the numerical simulation of the controlled rigid

body studied.

For different initial conditions, the Lewis and Simo method has been applied to obtain a description of

the flow of a stabilized rigid body, the numerical flow shows precisely the separatrix curve between orbits

corresponding to initial values along meridians on a sphere of constant momentum. The exact results

obtained using techniques of geometrical mechanics may be contrasted with those obtained using numerical

techniques which retain basic properties of the geometric structure of the dynamical system.
From the numerical solution of the dynamic problem on SOKð3Þ, corresponding to a stabilized rigid

body about the intermediate axis using a gas jet thruster applied on its minor axis, we have determined the

attitude of the rigid body in the physical space. We have seen that this problem can be stated in generalized

Rodrigues parameters and that as long as the coordinate singularity is not reached, the numerical solution

is then almost as efficient as the AKW method. A comparison is made with other numerical techniques

adapted to the mechanical model examined.
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